Python Games. Lecture 1b.

Contents
D T=E =4 o 1P UPPPPPPPPPRE 1
VATTADIES ...ttt e e st e e e s bt e e bt e e e be e e at e e sareeeneeesreeeane 3
] PSPPSR 3
D] oA To] o= =TT PR 9
(0o Te [1aT =T a1 (o3 =X [1o 17T 11

Reala
P r——
26885 /28000

- X

- oy

i
S 193/238

NiGHTS y Shadow [
——— T
N /D a 1005/1005 ~ 475 /475
E@ e y

' 320/355

This term we are going to look at the sub-systems of PyGame and Python to see what is required to
make games. If you are running this from home, run the Python docs found here first to set up your
environment... otherwise skip down the page to DESIGN.

http://www.drewfx.com/TAFE/python/Lecture Weekla.pdf

If you need to install Eclipse and Python at home follow these steps...
You will need Python2.5 installed first...
http://www.drewfx.com/TAFE/python/python-2.5.4.msi

Then install PyGame ...
http://www.drewfx.com/TAFE/python/pygame-1.9.1.win32-py2.5.msi

Then download Eclipse and unpack it to your Hard Drive (not the desktop) and run Eclipse.exe from
the Eclipse folder created.
http://www.drewfx.com/TAFE/python/eclipse-SDK-3.5.2-win32.zip

Design.
We need the following.

1) Input
2) Output
3) Encapsulation

http://www.drewfx.com/TAFE/python/Lecture_Week1a.pdf
http://www.drewfx.com/TAFE/python/python-2.5.4.msi
http://www.drewfx.com/TAFE/python/pygame-1.9.1.win32-py2.5.msi
http://www.blogger.com/If%20you%20need%20to%20install%20Eclipse%20and%20Python%20at%20home%20follow%20these%20steps...%20You%20will%20need%20Python2.5%20installed%20first...%20http:/www.drewfx.com/TAFE/python/python-2.5.4.msi%20%20Then%20install%20PyGame%20...%20http:/www.drewfx.com/TAFE/python/pygame-1.9.1.win32-py2.5.msi%20%20Then%20download%20Eclipse%20and%20unpack%20it%20to%20your%20Hard%20Drive%20%28not%20the%20desktop%29%20and%20run%20Eclipse.exe%20from%20the%20Eclipse%20folder%20created.%20http:/www.drewfx.com/TAFE/python/eclipse-SDK-3.5.2-win32.zip

Input can be thought of anything we do, or the game does to change what’s happening in the game
system.

Output can be thought of anything the game system shows us as a result of the input.
Encapsulation is information to enclose the entire game system.
Let’s have a look at the individual steps...
1. Input
So what are we going to use for input?

a) Mouse
b) Keyboard

2. Ouput
What is coming out of the program?

a) Sound
b) Graphics
c) Joy (ina bubble!)

3. Encapsulation

What kind of enclosure(s) do we need?

a) Instructions on how to play the game
b) Feedback on score, health, time etc.
c) True closure —game won, game over etc.

Okay so let’s plan a game. What do we need?

Variables
We are going to make a fighting game. The player is a knight and is beset by the evils of a tyrannical
regime created by the evil Lord Necron — obviously able to raise the dead etc.

Cool, so in true RPG style we need a system to store stats, abilities and inventory. What does the
player start with?

1. Inventory
a) Sword

b) Food

c) Armour

What are their abilities?

a) Strength

b) Dexterity

c) Constitution
d) Intelligence

What are their stats?

a) Level

b) Hit/Miss ratio
c) Spell to hit

d) Health

e) Mana

Lists.
How do we store this? We'll use what’s called a list.

A list is a type of array in Python. Wait what? You have no idea what an array is?

Arrays are a storage method in most programming languages with an index to point to individual
elements within that array.

For example. Let’s start with an array called myBackpack. We’ll make is 3 items big.
We could define our array like this.

myBackpack[0]="Sword”

myBackpack[1] = “Food”

myBackpack[2]="Armour”

Indeed this is how arrays work in many languages. If you know a bit about Python you can see this is
kinda looking more like a list. When we want to access a particular part of a array we do it using an
iterator. So if we want to know the n™ element we would access it like this.

myBackpack[n]

Before we get on to dictionaries let’s look at how lists work.

We can assign each of our items to it and see how it works in IDLE, so go to Start->Programs->Python
2.5->IDLE — (this is so much faster to try Python commands)

In Python arrays with no association or key are called lists.

Let's make one. Atthe command prompt (>>>) type the following...

74 *Python Shell* o[=]
Eile Edit Shell Debug Options Windows Help

Python 2.5.4 (r254:67216, Dec 23 2008, 15:10:54) [M5C +.1310 32 bit (Intel)] on _J
win32

Type "copyright™, "credits" or "license(}" for more information.

R R g R R R R RO R R R R RO R R R OMT WO R R R R R m W
Personal firewall =software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopkback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.

R R R R R R R R R R R A R A R R R R R AN AR AR AR A R R A A AR AR AR AR R AR AR AR R R AR

IDLE 1.2.4
>»>» myBackpack = []

This creates an empty list.

Now we can look at the functions of that object (myBackpack) by typing dir(myBackpack) and press
ENTER...

»>»>» dir (myBackpack)

[' _add ', ' class_ ', ' contains ', ' delattr ', ' delitem ', ' delsli
ce ', ' doec ', ' egq ', ' ge ', ' getattribute ', ' getitem ', ' gets
lige ', ' gt 'y, ' hash ', ' iadd ', ' imml *, ' ipnit ', ' iter ', °
1= ', ' _l1emn ', ' 1t ', ' ®mml *, ' me ', ' mnew ', ' reduce ', '_r
educe ex ', ' repr ', ' reversed ', ' rTmml ', ' setattr ', ' =etitem
'y '"__setsglice ', ' str ', 'append', 'count', 'extend', 'index', 'insert', 'p
op', 'remove', 'reverse', 'sort']

55> |

This shows us all the functions we can perform on myBackpack. So let’s try one.
Type the following...

But wait, when you type the dot, press TAB key and it will show you a list of possible functions.
Arrow up and down to select one then press ENTER. Note when the popup starts, then currently
select one is not valid, and if it’s the one you want you need to press down then up once to select it.

IDLE 1.2.4

e rryﬁac]-:pac]-: :;:-;:n—-ru:i J f%i

»»> dir (myBackp|count

[add ', ' [estend i ' delattr ', ' delitem ', ' del=sli
ce_ ', '__doc__ﬁiﬁ __'é ' getattrlbate 'y ' __getitem ', ' gets
lice ', '__gt_pup - ?d ' dmwml ', ' ipnitc*, ' diter ', !
_le ', ' lenfiemave mal ' '__new__', ' reduce ', '_r
educe_ex_ ', ' |everse sed%: ! IHJl 'y ' __setattr ', ' setitem
'y '__setslice |sof ' 'cuaﬂt' 'Extend', "index', 'insert', 'p
aop', 'remove', ﬂ

e rr.yBac]-:pac]c.l ‘%b % ?q“q B ;6&“" £

So we end up with the following.

»»>» myBackpack.count
<built-in method count of list object at O0x0Z21S9ESAQ>
553 |

Let’s add something to the list. We can do this two ways because Python rocks.

We can append a value, or can we just tell Python the nth element is something. In many languages
trying to add an element a previously unreserved location would cause an error (or exception)
because the memory has been illegally accessed.

Let’s see what happens if we try ...

»»» myBackpack[2] = "Armour"
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
myBackpack[2] = "Armour"
li=st assignment index out of range

Yep —totally fail. Let’s try it properly. Let’s append a value. Oh and try this too, type just “my”
(without the quotes) and then hit TAB — it auto-completes— great hey?

|}}} myEackpack.append{'ﬁrmnur'ﬂ

So what did we get? Let’s try another function on myBackpack.

|}}} len(m
|len(objectj -> integer

See len wants the object —so type in myBackpack...and hit ENTER.

>»>» len (myBackpack)
1

So it’s got one element in it.

We want Armour at the end so let’s insert two more objects, Food then Sword.
J|}}} myBackpack.insert (0, "Food™)

|| >>> myBackpack.insert (0, "Sword")

Cool now let’s look at the list length... but type “len(m” then press TAB — look! Python remembers
your object — select it.

I map ﬂ
s
i
i
i
P
>3 propety |
>>>» len (myBackpack
|leniobject] -» integer

Add the closing bracket and then press ENTER.

>=> len (myBackpack)
3

Now we have 3 elements in the array. Let’s see all of them. Just print the whole object...

»»>» print myBackpack
["Sword', 'Food', 'Armour']

element 3 but lists (like most arrays) are zero based, ie 0,1,2,3 ... n

How do we address individual elements? What element is Armour for example? You’d think it was

So armour is at index 2...

>=> myBackpack[2]
"Armour"

If you type index 3 you get an “out of range error” — remember that when you are making your
game.

»=>» myDackpack[3]

Traceback (most recent call last):
File "<pyshell#§46>", line 1, in <module
myBackpack[3]

IndexError: list index out of range

What else can we do with lists? We can sort them, so let’s see what happens if we do.

["5word', 'Food', 'Armour']
»»>» myBackpack.sort|()

>>» myBackpack

["Armour', 'Food', 'Sword']

The basic sort did so alphabetically because each “token” or element has an ascii value, a is smaller
than z numerically.

We can also reverse the list order...

>=> myBackpack.rewverse ()
»»>» myBackpack
["Sword', '"Food', '"Armour']

You can also pluck stuff out of it.
> myBackpack.remove ("Food"
»>» myBackpack

["Sword', '"Armour']

You might want to find something in lists as well. I’'m going to add back the Food first.

»>>» mybackpack.insert (1, "Food")

»>> mybackpack

["Sword', 'Food"', "Armour®]

»>»» for item in myBackpack:
print item

Sword

Food

Armour

If you need both the index and the item, use the enumerate function:

»»» for index, item in enumerate (myBackpack) :
print index, item

0 Sword
1l Food
2 Armour

Let’s have a look a few things before we go on. Notice the for... statements ended in colons (:) — this
is a standard way to end function definitions and for statements in Python.

Also notice the print was indented. This MUST be done in Python. It’s because Python expects code
to be written in this way to make it’s brevity work. For example if you tried to do the same thing is
C++ you might have to do this.

for (int i = 0; i < 100; i++)

{
print myArray[i 1;
myArray[i] = “somethingNew”;

In Python it’s this...
for index, item in enumerate (myArray):

print item
myArray[index]="somethingNew”

See that you don’t need { } braces or semi-colons to end each line. Python basically saves you a lot
of typing but if indents are in the place or are not the correct width it causes problems.

If you need only the index, use range and len:

i index range (len (myBackpack)) :
index

RS I

The list object supports the iterator protocol. To explicitly create an iterator, use the built-in iter

function:

»>» myBackpack = ["Food", "Lrmour™, "Sword"®

»»» 1 = iter myBackpack)

»»» item = i.next ()

> item

'Food"

»»» item = i.next ()

> item

'Armonr”

»»» item = i.next ()

> item

' Sword"'

»»» item = i.next ()

Traceback [(most recent call last):

File "<pyshellf84>", line 1, in <module>

item = i.next|()

Stoplteration

See how it errors out when you reach the end?

Also notice how I refilled the array on the first line — another way to assign a list. Remember in the
last loop we ended up replacing everything with “somethingNew”

Okay so this is a good way to store stuff, and perhaps a good way to keep all our items held in our
backpack, but what if we want particular things to look for and lock in place? This is a typical
requirement of the paperdoll you see in many character GUIs for an MMO. So you want to assign a
Sword from your Backpack to the Left Hand slot on your paper doll? An easy way to do this is by
using Dictionaries.

Dictionaries.
Dictionaries can also be thought of as associative arrays. What this means is that each value is
associated with a key. Dictionaries are lists with key, value pairs.

Let’s define a dictionary in IDLE. It’s similar to defining a list but you use the {} braces instead of the
[] braces.

IDLE 1.2.4
»>»>» myPaperDoll = {}
»»>» dir (myPaperDoll)

[' _eclass ', ' ecmp ', ' contains ', ' delattr ', ' delitem ', ' doc !
;' _®e°g ", ' ge ', ' getattribute ', ' getitem ', ' gt ', ' hash ', '
__ipit "', ' iter ', ' 1le ', ' lem ', ' 1t ', ' me ', ' mew ', ' re
duce ', ' reduce ex ', ' repr ', ' setattr ', ' setitem ', ' str ', !

clear', 'copy', 'fromkeys', 'get', 'has key', 'items', 'iteritems', 'iterkeys',
'itervalues', 'keys', 'vop', 'popitem', 'setdefault', 'update', 'wvalues']
ey

After | defined it, | did a dir() to see what functions | could use.

To add a key, value pair to the myPaperDoll object do this...

> myPaperDoll ["Left Hand"]="Fist"
»>»>» myPaperDoll

{'Left Hand': 'Fist'}

e

The key is “Left Hand” and the value is “Fist”. You cannot add another key of “Left Hand”, it will only
replace the current value of the key instead. So this is how we assign Sword to Left Hand...

However, so that we don’t try to assign a value to a key that might not exist, let’s check that the key
exists first. The reason we do this, is we might have a wandering monster that simply doesn’t have a
Left Hand — it might just be a Gigantic Snake with only a Fangs to bite with.

>»> if (myPaperDoll.has key("Left Hand")):

myPaperDoll ["Left Hand"™] = "Sword"”

>»>» myPaperDoll
{"Left Hand': "Sword'}
e

NOTE!!!! The way | typed this in was as follows.
At >>> | typed...
if (myPaperDoll.has key("Left Hand")):
...and | pressed ENTER once... which auto-indented for me
Then | type the next line...

myPaperDoll ["Left Hand"] = "Sword"

Then | pressed ENTER again and once more to tell IDLE | had finished typing the condition and
statement. Finally | type on a new line ...

myPaperDoll

Keys can be of different type within the same dictionary and the same goes for values. Dictionaries
aren't just for strings. Dictionary values can be any data type, including strings, integers, objects, or
even other dictionaries. And within a single dictionary, the values don't all have to be the same type;
you can mix and match as needed.

Dictionary keys are more restricted, but they can be strings, integers, and a few other types. You can
also mix and match key data types within a dictionary.

So let’s add some modifiers for the Left Hand because they are also going to be wearing a Ring with
+2 to Dexterity...

>»>» myPaperDoll["Left Hand Ring™] = "Ring Of Dexterity™
>»» 1T (myPaperDoll.has key("Left Hand Ring"})):
if (myPaperDoll["Leftr Hand Ring™] == "Ring Of Dexterity™):
if (myPaperDoll.has key("Dex Bonus") == False):
myPaperDoll ["Dex Bonus"] = 0 *ﬂﬁ

myPaperDoll ["Dex Bonus"] += 2 i

e WO KS PR CE
>»» myPaperDoll
{"Left Hand Ring': 'Ring Of Dexterity', 'Dex Bonus': 2, 'Left Hand': 'Sword'}
T

NOTE: Make sure you pay attention to the brackets used; there are square ones for assigning values
and round ones for functions such as has_key

What I've done here is similar to the previous example, in the way | have type in the commands,
except for the line after...

myPaperDoll ["Dex Bonus"] = 0

It auto-indented for me, but | wanted to step back 1 indent so the next line always got executed, so |
pressed the backspace key on the keyboard ONCE then typed...

myPaperDoll ["Dex Bonus"] += 2

| pressed ENTER a few more times to tell IDLE | had finished.
Finally | typed...

myPaperDoll

... to print out the contents of the dictionary.

So what’s going on here?

[E

Give the player the Ring Of Dexterity (should check the player has this key in future)

N

Make sure we have a Left Hand Ring

H W

)

)

) Make sure the ring is a Ring Of Dexterity

) Make sure we have a Dex Bonus key because we want to mod it
)

Ul

Finally if all this goes through, add +2 to the Dex Bonus.

When | printed out myPaperDoll, notice that | have indeed mixed strings with numbers. The Dex
Bonus value is a number while the others are strings...

»>»» myPaperDoll
{'Left Hand Ring': '"Ring Of Dexteritvy', 'Dex Bonus': 2, 'Left Hand': 'Sword'}
3> |

Cool! Now we have this knowledge let’s actually write a module to store all this.

Application # 2.

We will make a Main module to run the game from, but we will also write a stand-alone python
module so we can import it and use it over and over again for different entities (people/beasts) in
the game. So open Eclipse and make a new PyDev Project — store it on H: or on your removable
drive...

Edit Source Refactoring Mavigate Search Project Pyd WWWIFI

New Alt+Shift<N b Pydev Project it
GPEH File... |_=fj . Fmpwwmmmﬂj
Cloze Ctrl+W | (2 Source Folder

Now you get this screen, so give the project a name, and take care to change the circled settings. To
browse for your folder uncheck the USE DEFAULT checkbox...

- =[5]S]

Pydev FProject ﬁ

Create a new Pydev Project.

Project name: MyFirstRPG

ject contents:
Lse default
Directory H\tafework\TAFE_GamesAsset<\Python\RPG_Game

Project type

Chgose the project type
| Fython) lython) Iron Python

r Version
{ 25}]

R
InterErEEE?“W.,%

fPython2s ./ - |
ETﬂW»ﬂgccnfiqure an interpreter not listed.

Create default 'src’ folder and add it to the pythonpath?

@:‘ < Back Mext = l [Finish] ’ Cancel

If you have no Interpreter defined check the Lecturela document on page 5. You can find that doc

here...

http://www.drewfx.com/TAFE/python/Lecture Weekla.pdf

So after pressing Finish you will probably see this because we were previously working on another
project. Just hit the little triangle circled in this pic and it will collapse. We are interested in the

second project.

[% Pydev Package Explorer i = O
R
@ MyFirstPythonProgram
PRE:E s 2

- [F] Main.py
- @ Python25 (C\Python25\python.exe)
4 1= MyFirstRPG
[cre '
- & Python25 (C\Python25\python.exe)

http://www.drewfx.com/TAFE/python/Lecture_Week1a.pdf

So your view should look like this now... close the Main.py from the other project if it’s still open.

r’|:E Pydev Package Explorer 3

b == MyFirstPythonProgram
4 1= MyFirstRPG

from random import choice

[=rc
- 2 Python25 (C\Python25\python.exe) _m}g'.l'empLis?M:M[]
_ myTemplist = myltunesLibi

Now add a new Main.py module...

1. Right click on the “src” folder and click on New->Python Module NOTE if you cant

see PyDev Module as in the pic below, you will find it under Other...

< Pydev - Eclipse SDK
File Edit Mavigate Search Project Pydev Run Window Help

[=<j' - @ %z‘_\j:\ - 0 - % - Qn - _) - '-r - 3'5::! -c.'::l - -
ra = ~
% Pydev Package Explorer 7 B
BES|3 "~
4 [= MgFirgtPythonProgram
L4 roject...
- mef = 1 J
Go Into 2 =
|7 File
= Copy % Folder
[Paste [F] PydevModule
4| s 1 Pydev Package [
Move...
Rename.. % Other.., Ctrl+M
| &

1. Call the file Main (no Package at this stage), select Template as Module:Main and
click Finish

Create a new Python module

Source Folder /MyFirstPythonProgram//src

Browse...
Packagﬁgx Browse...
Mame _Main, .}
<Empty= o
Maodule: Class
Maodule: Main i
CEReE Module: Unittest el

Module: Unittest with setUp and tearDown

Ve

®@

| Fnsh || Cancel

2. Now you’ll see this. This is the template code to run as a module.

File Edit Source Refactoring Mavigate Search Project Pydev Bun Window Help

H"EH& ® -0~ Q- #r HH o~

; —
[2 Pydev Package Explorer 52 B || IF] Main 53

¥ q 4

% | :{—.:'.} = e
= MyFirstPythonProgram Created on 07/ 0772010
[src I ana
- Gauthor: Andy
[F] Main.py

= Python25 (C\Python25python.exe)

rrr

if name = ' main ':
pass

Yes this is the same as we did last time.

You also want to set up a Run Configuration again.

rﬁ'v r=:l @ ﬁ:\v v}v an ':!}Iv.:i}l

[. .
5] Pydev Package Explorer &2 1 New_configuration
Run As r
=% MyFirstPythonProgram =+ Run Configurations...
P .
= MyFirstRPG Organize Favorites...
B arc L rrr

But this time click on the New button circled to create a new run configuration then fill out the fields

as before...
~ 00 0
e = EY k (Backpack)

= =T

! = Bjx | B & Mame: MNew_configuration (1) Il (PaperDoll)
?pefiltertext — hckpack
= L (a1 .mwmmﬁ-ﬁ ErfirerTErsa,] Commol L

& Eclipse Application ! e W [ameWorld

@' Iron Python Run - kpackContents

& Tron Python unittest - " h""ﬁ

Java Applet

Java Application Main Module

Jii JUnit Plug-in Test

& Jython run PYTHONPATH that will be used in the run:

';’U Jyth(.m unittest ! D:\eclipse-SDK-3.5.2-win32\eclipse\plugins\org.python.pydev. = Project selection =0

4 05Gi Framework H:\tafework\TAFE_GamesAssets\Python\RPG_Game\src i /

E Pydev Django C:\Python25 Choose a project for the run

25 Pydev Google App Run C:\Python25\DLLs | f

é; Python Coverage Ci\Python25\lib ¥

3 C:\Python25hlibhlib-tk F MvFiretPuthonp /
@& Python Run g CA\PythonZ5\lib\plat-win 'bp yFirstPythonProgram
3) - . .
& MNew_configuration C:\Python25\lib\site-packages = MyFirstRPG gg“
eF MNew_configuration (1)

éJ Python unittest

Then click on the Main Module browse and browse to src\Main.py...
-

'@ Main - (9= Argumentﬂ -~ Interpreteﬂ i F‘.efreshw -} Enuirunmenﬂ =| Qommurﬂ
Project

Main Module

Sworkspace_locMyFirstRPG/sre/Main.py}

(e)

PYTHOMPATH that will be used in thé n:

D:"aeclipse-SDK-B.5.2-win32\eclipse\plugl svorg.pythd == Main Module
H:\tafework\ TAFE_GamesAssets' Python\REG_Game'y

C:\Pythons Choose Python module which starts exgé)
ChPython25\DLLs .
C:\Python25\lib : 4 [sre

ython25hli %h W“"

CPython25\ibhlib-th
ChPython25tibY plat-win

l.‘__p‘l Main.p‘_:.r A

Now we want to have some sort of initialisation so scrub out pass, replace it with

initialiseGameWorld ()

... and type in the following. Notice that 2 imports have been added to the top. We will write these
next, so ignore the red X’s for now.

{2 Pydev Package Explorer &3 = O F *Main &3
E <}-=.4>| 3:::} hd Zirarw

=% MyFirstPythonProgram Created on 21/07/2010
= MyFirstRPG e Ap

[src LT

[F] Main.py @ c - .
from Backpack import Backpack
[Python25 (CAPython25python.exe) @ from PaperDoll import PaperDall

“def initialiseGameWorld() :

= rrr
Here 15 whers we set evervthing up

pass

if name == ' main ":

;nitialiseGaEEwOrld:J
Add the playerBackPack and the next two functions below the import PaperDoll line...
;] from PaperDoll import PaperDoll
playersBackpack = Backpack()
“def initialiseGameWorld():

Here 15 where we set evervthing up

“def showBackpackContents():

plaversBackpack. show ()

And add showBackpackContents after initialiseGameWorld() at the bottom...

if name == ' main "

initialiseGameWorld ()

sthEackpackCDntentsmjl gkpwmﬂwmrﬂff
&

Okay so now we need to add 2 classes, Backpack and PaperDoll.

Right click on src and select New->Python Module (or New->Other->Python Module,

MyFirstRPG || Bauthor: Andy
% % Mew v | % Project..
b Bl Go Into Ij File
,; LE; Ll:%l Copy % Folder
g | Paste [F] Pydev Module
X | Delete B Pydev Package
PMowve...

then change the Template to Module:Class and call it Backpack, and hit Finish

= =[5]S]
Create a new Python module ' 5 _"ﬂ J
—
.
Source Folder /MyFirstRPG/src
Package Browse.
Mame BackpacH
< EmE:h
T It Module: Main Confi
smplate Module: Unittest ~ontg...
Medule: Unittest with setlp and tearDown
@ [Finish | [Cancel

Do the same again for PaperDoll...

MyFirstRPG || EBauthor: Andy
% % MNew v | % Project..
b Bl Go Into [% File
r; LE; Ll:%l Copy % Folder
g | Paste [F] Pydev Module
X | Delete 1 Pydev Package
Mnwve...

Create a new Python module

Source Folder /MyFirstRPG/src Browse...
Package Browse...
Mame PaperDol|

< EmE:h

Module: Main i
Template Module: Unittest Lonfig...

Medule: Unittest with setlp and tearDown

@ [Finish || Cancel

Then select Backpack.py from the top tabs...

_ [F] PaperDall]

= rrr

Created on 21/707/2010

Fauthor: %

rrr

And overwrite the template code to look like this... make sure you change the parameter lists () to
match...

- rrr

Created on 2170772010

gzuthor: Andv
P)

rror

= def init (s=lf):

r

L PR
Constructor

rror

self.myBackpack = []

= def addToBackpack (s=1f, item):

= rrr

= b

llowvs calling codes to add item to private attributs
rr
s=lf.myBackpack. append (item)

= def show(s=1l):

- rror

= I

hov the contents of the backpack
r

r

print self.myBackpack

Notice we have added two new functions, addToBackpack and show.

Also notice every function uses self as the first parameter in the brackets, this must be done for

classes.

Def _init__is the constructor. This allows us to make a new backpack in the main.py as required.

Click on the Main.py tab and add the following code as circled in red...

[F] Backpack 1 [F] PaperDoll 1

Created on 21/707/2010

“from Backpack import Backpack
i from PaperDoll import PaperDoll

{:;1ayersBackpack = Backpackl()

- —

This creates a new Backpack object.

Click on the PaperDoll.py in the top tabs and make sure the code is modified to look like this...

ﬂ Main _ﬂ Backpack

e = g s
Created on 21707/

L)
= M

fﬂmh

“clas f;;;[‘ﬂﬂlﬁ
- i

classdocs

e

v
W o— -
o

= "ﬁh def init isei.t;]’::}
= __“_ o

Click on the Main.py tab at the top (this is the one that is tied to the Run Configuration) If you run
the program now it will show [“Sword”] in the console...

S LSS

@Main @Ba:
ER-IE | B

Created on

[L Proble El Console 2 =)= Variables
fework TAFE_GamesAssets\Python\RPG_Gamesrc\Main.py

erminated> H:
["Sword']

So deconstructing it we can now have a look at the initialiseGameWorld() function and see that once

the playerBack has been created above it (making it global) we can call the Backback’s function
addToBackpack and give it an item, and then Backpack’s show function to display the contents of the
backpack.

“from Backpack import Backpack
& from PaperDoll import PaperDoll

playersBackpack = Backpack() 3j£ AT

“'def initiali=zeGameWorld():

Here 15 wherse we s=t evers

.

playerzsBackpack.addIoBackpack("Svord") s,

“'def showBackpackContents():

T, - e B _— * . — * Fad 1, -
Tvpically run when vou press the £ or B key

playersBackpack.show () ﬁxm_ e
if name == ' main ':

initialiseGameWorld() lff

shanackpackCnntentsm}I >

Finally let’s instantiate (or create new) the PaperDoll for this player, so add the code just above
playerBackpack = Backpack()...

= Tn - AmrmAAs
OLiaor. .‘-...--.-._!-r
r

&
:

=

“from Backpack import Backpack
from PaperDoll import PaperDoll

playersPaperDoll = PaperDoll () g&fﬁﬁﬁ

playersBackpack = Backpack()

And we need to add some more functionality to PaperDoll to use it, so click on the top tab to change
to PaperDoll.py and add the following code...

“class PaperDoll() :

classdocs
rr

e
ter

zelf.myPaperDoll = {}

def addSlotToPaperDoll (s=1f, slotHame) : é%:mﬂ”wf

gelf.myPaperDoll [slotName] = None

-
= kL
= [
L
1]
L
et
o
ot
1]
L
1]
a3
o

4

def opdateSlot(s=lf, slotMName, walue): ﬂfﬂf

rror
E e Lo i

if gelf.myPaperDoll.has key(slotHame) :
self.myPaperDoll [slotName] = walue

5

def show(s=1l):
rrr Display the contents of the papsrdoll p—

print self.myPaperDoll

Notice in addSlotToPaperDoll, the use of the None as a value. This will allow us to add whatever we

want later.

Now click back on to Main.py and add the final changes.

Okay so type in this code...

Notice when you start typing after playersPaperDoll. (dot) it shows you the current functions

allowable...
playersBackpack.addToBackpack | "Svord")
L] playersPaperDoll.I
_ O _init_Q delf“_lmt_(self_]:
—“def showBackpackConte
= s O addSlotToPaperDoll{slctName) Constructor

v wun @ myPaperDoll
i # create an empty dicticnary

P) Q updateSlot(slotMName, value) .oy P Doll = {}
self.myPaperDoll =

playersBackpack.s

“from Backpack import Backpack
from PaperDoll import PaperDoll

playersPaperDoll = PaperDoll ()
plaversBackpack = Backpack()

“def initialiseGamelWorld() :

[Iere 15 WOSXrse We SSC everyLhiling up

plaversBackpack.addToBackpack ("Svord"™) Wdf
playersPaperDoll . addSlotToPaperDoll ("Larft Hand™) ﬁ:
plaversPaperDoll .updateSlot ("Laeft Hand"™, "Sword™)

“def showBackpackContents():

. S N | SN N — p
J._’:SJ.:EJ.J._\-’ IUn wWicsn _'rrjl.l press Lis

plaversBackpack.show ()

“def showPaperDoll () : f_ ._,.,qp“""jf#

Fag p PR — -
SLI0F LS ;.f:;.fE'l"-.‘:'a.a.

playersPaperDoll.show ()

if name == ' main ':

initialiseGameWorld ()

showBackpackContents () M

showPaperDoll ()

Great! Now run it (make sure Main.py is selected) and you will see the following in the console.

(2! Problems | Bl Console 52 (=)= Variables

<terminated> H\tafework\ TAFE_GamesAssets\ Python\RPG_Game\srcMain.py
["Sword']
{'Left Hand': 'Sword'}

Well done. Well on your way to making an RPG!

You will be able to make one backpack per entity in the game (player, beasty) and also give every
one of them, their own paperdoll too. This is classes in action. We'll recap next week.

