
ABSTRACTION

We know we want to make a space shooter, and we
know we will need a way to create spaceships. We don't
care while we are designing the game what memory to
use, what the graphics card is, how to handle shields,
or shooting lasers and collision detection.

By using abstraction we can design the game and solve
problems at a higher level. Finally we can code the
particulars once the design is complete – then we worry
about the details.

ENCAPSULATION

The spaceStation base class has an interface to its behaviours
defined by its public methods. We can design the spaceStation
to produce ships based on what we want them to do in game.

It means when we spawn a ship we suddenly have
access to all it's outward facing controls such as
SetSpeed(), GetShields(), AttackPlayer() but we
don't need to know how these work.

Internally the functionality of these behaviours are
protected and are mostly future proof. For example
the AttackPlayer() method can change to do something
new and the calling code doesn't need to change – like
an invisible upgrade.

A class is like a alien spaceStation.

These 3 spaceships are created in the spaceStation but each
can have unique properties, such as different speeds,
different shields, different bullets.
In object oriented programming terms they can be thought of
as a derived classes, or sub-class of the
base class/original spaceStation.

INHERITANCE

The base class (or spaceStation) has
predefined data types also called attributes

Each of these ships (or sub-classes/child classes)
inherit the attributes from the base class (spaceStation),
kind of like passing on the values when creating ships.

For example the spaceStation will have speed and shields
attributes. These are float data types.
Each derived spaceship /sub-class can then change
the value of speed and shields to suit the new
ship/object.

INHERITANCE

The base class / spaceStation also has
embedded functionality called behaviours.

The derived ships / sub-classes also inherit these
behaviours. An example of a behaviour could be Fire() –
each ship knows how to fire weapons.

However each ship can be defined to have it's own weapons
systems. Some have lasers, some have photon torpedos and
some have missiles.

This is called inheritance and allows for code re-use with little
or no modification. What this means is you could spawn 100
ships all firing lasers and then spawn 10 ships that fire missiles
by changing only a few lines of code.

INHERITANCE

POLYMORPHISM

The spaceStation base class has a behaviour
or method called DodgePlayer()

Each of the ships inherits the DodgePlayer() behaviour but in
ship number one it dodges by flying up. Ship 2 flies away in the
opposite direction really fast and ship 3 rams the player in an
attempt to damage their shields.

But we don't care about this as a programmer. All we want to
do is tell the alien to DodgePlayer() so we can use this ability
of classes called Polymorphism to call Ship.DodgePlayer()
and each ship will deal with the movement how it sees fit to
do so.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

